If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6+5x^2=45
We move all terms to the left:
6+5x^2-(45)=0
We add all the numbers together, and all the variables
5x^2-39=0
a = 5; b = 0; c = -39;
Δ = b2-4ac
Δ = 02-4·5·(-39)
Δ = 780
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{780}=\sqrt{4*195}=\sqrt{4}*\sqrt{195}=2\sqrt{195}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{195}}{2*5}=\frac{0-2\sqrt{195}}{10} =-\frac{2\sqrt{195}}{10} =-\frac{\sqrt{195}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{195}}{2*5}=\frac{0+2\sqrt{195}}{10} =\frac{2\sqrt{195}}{10} =\frac{\sqrt{195}}{5} $
| 12-23k=1368 | | 9w+63=16w | | -17=4+3u | | (3x+78)=126 | | -26x+39=0 | | 3x+1=7x-23 | | (20+9)85=b | | -5k-17=433 | | b=85(20+9) | | 5+3-7x=50 | | 25x+37=137 | | b=85(20=9) | | b=85(20 | | 4(2a+3)=-3(9-1)31 | | b=90+(10+8)-215 | | -23+k/23=-25 | | -29+3m=-20 | | 12x-25+x-3=360 | | 11-9/10x=7-1/5x | | b=90+(10+8)=215 | | 51x=3 | | (1/125)^3x-1=1/25 | | 189=-6+3(-7x-18 | | -16x^2+32x-1.5=0 | | 5x45=4x | | 3y-1/21=2y-2/12 | | 12x+4-5x=18 | | 3^x+1=3^4 | | 8c=18=34 | | 3e=51 | | 5+2p=127 | | -152=-16+8a |